
NetStreams DigiLinX

Writing StreamNet Device Drivers

™ ™

™

Copyright

Title: Writing StreamNet Device Drivers
Document Number: 020014A
Original Publication Date: August 14, 2006
Revision Date: February 27, 2007

All rights reserved.
Copyright © 2007 by NetStreams.

All brand names, product names, and trademarks are properties of their
respective owners.

3600 W. Parmer Lane, Suite 100

Austin, TX 78727

USA

Phone: +1 512.977.9393

Fax: +1 512.977.9398

Toll Free Technical Support 1-866-353-3496

iii

Chapter 1: Introduction .. 1-1

Introduction to Lua .. 1-2

Chapter 2: Activating Drivers within DigiLinX Dealer Setup .. 2-1

Chapter 3: Handling Commands ... 3-1

Handling Commands .. 3-2
Example: Handle_Set ... 3-2

Chapter 4: Handling Communications .. 4-1

Chapter 5: Configuration .. 5-1

Chapter 6: Installing the Driver .. 6-1

Useful Development Tips .. 6-7

Chapter 7: Generating Status Reports .. 7-1

Chapter 8: Diagnostic Messages ... 8-1

Chapter 9: Reference .. 9-1

Syntax ... 9-1

Control ... 9-1
default_handle_command (command) ... 9-1
handle_command(command) .. 9-2
aNode = getSubNode(strNodeName) ... 9-2
setStatus(strField, value) ... 9-3
aString = getStatus(strField, value) .. 9-3

SubNode ... 9-3
aSubNode = createSubNode(strName) ... 9-3
aTable = subNodes .. 9-3
aString = aSubNode.name .. 9-3
aStatus = aSubNode.status .. 9-3
aSubNode:setStatus(strField, value) ... 9-3
aString = aSubNode:getStatus(strField, value) ... 9-4
aSubNode:default_handle_command(command) ... 9-4
aSubNode:handle_command(command) .. 9-4

AsciiCommand .. 9-4
aString = command.command .. 9-4
aTable = command.params ... 9-4
aString = command.to ... 9-5

Contents

iv

Writing Streamnet Device Drivers

aString = command.toNode .. 9-5
aString = command.toSubNode .. 9-5
aString = command.from .. 9-5
aString = command.fromNode ... 9-5
aString = command.fromSubNode ... 9-5

Stream .. 9-5
aStream = createStream(strPort) ... 9-6
aString = stream:read(max) .. 9-7
stream:write(aString) .. 9-7
anInteger = stream:available() .. 9-7
stream:startAsyncInput(aFunction, options) ... 9-8
stream:stopAsyncInput() ... 9-8

Status .. 9-9
aStatus = createStatus() ... 9-9
aStatus = status .. 9-9
status:setField(field, value) ... 9-9
aString = aStatus:getField(field) ... 9-9

Timer .. 9-10
aTimer = createTimer(nMS, aFunction) ... 9-10
anInteger = aTimer.duration ... 9-10
aTimer:cancel() ... 9-10
aTimer:queue(nMS) .. 9-11

Debug ... 9-11
debug(category, …) .. 9-11
setDebug(category, <”on”|”off”|”toggle”>) .. 9-11

Appendix A:Lua 5.0 License ... A-1

Appendix B:Editing Environments ... B-1

Appendix C:Control Driver Example .. C-1

Appendix D:Audio Driver Example ... D-1

1-1
All specifications subject to change without notification. All rights reserved. Copyright © 2007 NetStreams

Main +1 512.977-9393 / fax +1 512.977.9398 / Toll Free Technical Support +1 866-353-3496
3600 W. Parmer Lane, Suite 100; Austin, TX 78727 / www.netstreams.com.

Chapter

1
Introduction

NetStreams® ships drivers for a variety of third party systems with the DigiLinX™
system. These drivers include Lutron® for lighting, Aprilaire® for HVAC, and GE
Concord® for security. Custom installers can use these included drivers with a
ControLinX™ to enable DigiLinX control of external systems. Sometimes, the
specific needs of a job require DigiLinX to control different third party systems. The
NetStreams StreamNet™ device driver Application Programming Interface (API) is
designed to enable programmers to interface RS-232 and network devices with the
NetStreams DigiLinX system. This gives custom installers the flexibility they need for
their jobs.

The DigiLinX system is a combination of hardware, software, and firmware. To
understand how to interface third party systems with DigiLinX, programmers must
understand the architecture of the system (see Figure 1-1).

Figure 1-1 DigiLinX Hardware/Software model

In the DigiLinX system, the hardware layer is controlled by firmware. Firmware is
controlled and updated by software, which in turn is controlled by configuration files,
and drives the User Interface. NetStreams’ engineering team has created an API that

Hardware

Firmware

Configuration
API

User Interface

Software

Driver

Writing StreamNet Device Drivers

1-2
All specifications subject to change without notification. All rights reserved. Copyright © 2007 NetStreams

Main +1 512.977-9393 / fax +1 512.977.9398 / Toll Free Technical Support +1 866-353-3496
3600 W. Parmer Lane, Suite 100; Austin, TX 78727 / www.netstreams.com.

enables DigiLinX to control and be controlled by third party systems using a driver
(seeFigure 1-2).

Figure 1-2 Connecting 3rd Party Systems to DigiLinX

Device drivers allow two-way interaction with third party hardware devices over a
communications subsystem, such as RS-232. The ControLinX device includes the
hardware needed to control external systems.

The DigiLinX API is written in a programming language called Lua. Lua is a free,
lightweight, procedural language that is designed to be fast and easy to learn for most
programmers. Third party drivers must be written in Lua to work with the DigiLinX
API.

Third party drivers are composed of objects called Controls. These Controls are
represented by all of the functions and variables in the driver’s code. Drivers may also
contain code to control subcomponents, called subNodes. DigiLinX treats subNodes
as logical entities for both accepting commands and producing status messages. For
example, in a lighting system, a subNode might represent a specific lighting load.
Commands addressed to this subNode would then only affect that lighting load and all
status messages related to the load would be addressed from the subNode.

Introduction to Lua
Lua is a byte-code interpreted language, similar to Java. It provides a small scripting
and user-customizable interface to a subset of an application written in C or C++.

Where Java is primarily focused on providing all of the tools necessary to write a
complete application, Lua is focused on providing minimal system interfaces and a
tightly coupled interface to an underlying application.

The benefits of Lua include:

Extension Language – Lua is designed from the ground up to be an extension
language. This is a language solely used to extend the functionality of a larger
application. This means there is a two-way interface that easily allows Lua code to
invoke native subroutines and vice-versa. The vast majority of the functional

Introduction

1-3
All specifications subject to change without notification. All rights reserved. Copyright © 2007 NetStreams

Main +1 512.977-9393 / fax +1 512.977.9398 / Toll Free Technical Support +1 866-353-3496
3600 W. Parmer Lane, Suite 100; Austin, TX 78727 / www.netstreams.com.

portion of the control system can be written in C/C++ while a minimum of device
specific code is written in interpreted Lua.

Minimal System Interface and Dependence – The Lua virtual machine and its
associated parser/compiler are written in ANSI-standard C with a minimum system
interface. There is no operating system (OS) interface defined at the script level.

Native String Manipulation – The bulk of the necessary string operations
(concatenation, searching, formatting, regular expressions, etc.) are implemented
in ANSI C, rather than being implemented in the script language. This provides for
substantially improved performance given that the majority of control applications
are string parsing and generation.

Virtual Machine (VM) implementation – The Lua scripting language is compiled
(either at runtime or in advance) into a VM-interpreted language that is
subsequently run on a virtual machine designed with the language constraints in
mind. This substantially improves performance over similar languages that are
fully interpreted.

Object-oriented – While Lua is not an object-oriented language, there are sufficient
language features that it can be treated as such.

The Lua script engine and its associated tools are licensed under a MIT-style license,
which states that it is copyrighted material but free license is granted for commercial
and non-commercial usage.

For the full Lua license see Appendix A, Lua 5.0 License on page A-1.

Further information on Lua is available either from the web site http://www.lua.org or
Programming in Lua by Roberto Lerusalimschy.

Writing StreamNet Device Drivers

1-4
All specifications subject to change without notification. All rights reserved. Copyright © 2007 NetStreams

Main +1 512.977-9393 / fax +1 512.977.9398 / Toll Free Technical Support +1 866-353-3496
3600 W. Parmer Lane, Suite 100; Austin, TX 78727 / www.netstreams.com.

2-1
All specifications subject to change without notification. All rights reserved. Copyright © 2007 NetStreams

Main +1 512.977-9393 / fax +1 512.977.9398 / Toll Free Technical Support +1 866-353-3496
3600 W. Parmer Lane, Suite 100; Austin, TX 78727 / www.netstreams.com.

Chapter

2
Activating Drivers within DigiLinX Dealer Setup

Starting with version 1.70, DigiLinX Dealer Setup uses an intelligent lookup to
determine if there are custom written drivers present in the system.

In order to load custom written drivers through DigiLinX Dealer Setup, you must first
create a new folder called “drivers” under your DigiLinX Dealer Setup install
directory and copy the .lua driver file to this directory. In most cases, the directory will
be:

C:\Program Files\DigiLinX Dealer Setup\drivers\yourdriverfile.lua

After you have created this folder and copied your driver file into the folder, build
your project normally in DigiLinX Dealer Setup. Add a ControLinX or MediaLinX to
your project, selecting the GUI type from the dropdown menu (for example, Tuner,
Lutron, etc.). When you enter the details for your ControLinX or MediaLinX, Dealer
Setup will detect the custom driver in the drivers folder and present the option to select
a new .lua driver file.

Writing StreamNet Device Drivers

2-2
All specifications subject to change without notification. All rights reserved. Copyright © 2006 NetStreams

Main +1 512.977-9393 / fax +1 512.977.9398 / Toll Free Technical Support +1 866-353-3496
3600 W. Parmer Lane, Suite 100; Austin, TX 78727 / www.netstreams.com.

3-1
All specifications subject to change without notification. All rights reserved. Copyright © 2007 NetStreams

Main +1 512.977-9393 / fax +1 512.977.9398 / Toll Free Technical Support +1 866-353-3496
3600 W. Parmer Lane, Suite 100; Austin, TX 78727 / www.netstreams.com.

Chapter

3
Handling Commands

The generation and processing of ASCII-formatted commands is central to the
interaction between various StreamNet devices and hence, the heart of a device driver
is how it receives and process ASCII commands. Figure 3-1 shows how the
StreamNet commands flow.

Figure 3-1 StreamNet command flow

As commands are received by the host StreamNet device, they are parsed to separate
out the various addressing fields, ASCII command, and command parameters. Once
the command is completely parsed, it is passed to the device driver for handling by the
appropriate Lua code. Refer to Figure 3-2 to see how commands are routed within the
driver.

User Presses GUI
Button

GUI code generates a
StreamNet ASCII

command and sends it
to the StreamNet device

StreamNet device
receives and parses

command and sends it to
the Lua driver

StreamNet command is
routed to the appropriate
section of the Lua driver

code

Writing StreamNet Device Drivers

3-2
All specifications subject to change without notification. All rights reserved. Copyright © 2007 NetStreams

Main +1 512.977-9393 / fax +1 512.977.9398 / Toll Free Technical Support +1 866-353-3496
3600 W. Parmer Lane, Suite 100; Austin, TX 78727 / www.netstreams.com.

NOTE

Figure 3-2 Command routing within the driver

Handling Commands

It is always possible to
define an appropriate
command-specific
handler, so that the
default_command_hand
ler is not needed.
Programming best-
practices state that a
fallback
default_command_hand
ler should be defined
even if it is not intended
for use.

For a device driver to receive and handle commands, it is necessary to define Lua
functions with predefined names based on the command to be handled. The routine
that needs to be defined is “handle_<command>” (where <command> is replaced with
the lower cased version of the ASCII command). For example, if a driver needs to
handle #SET commands, it needs to define a function handle_set within the driver. As
a fall-back mechanism, if no command-specific function is defined, the function
“default_command_handler” will be invoked if defined.

If the command is generic to the entire device, the necessary function should be
defined in the outermost control scope of the Lua file, and will be invoked with only
the command as a parameter.

Example: Handle_Set
function handle_set(cmd)

if(cmd.params[1] == “heat”) then

… handle the #set heat command

end

end

function default_command_handler(cmd)

Is the command
addressed to a

subnode?

Is there a subnode
specific command

handler?

Is there a Control
specific command

handler?

Ye
s

Ye
s

No

No

No

Ye
s

Is there a subnode
default command

handler?

Ye
s

Is there a Control
specific command

handler?
No No

Ye
s

Streamnet command is routed to the appropriate section of the Lua driver code

Start

Call Control default
command handler

Call Control specific
command handler

Call Control specific
command handler

Call Control default
command handler

Call subnode specific
command handler

Call subnode default
command handler

Handling Commands

3-3
All specifications subject to change without notification. All rights reserved. Copyright © 2007 NetStreams

Main +1 512.977-9393 / fax +1 512.977.9398 / Toll Free Technical Support +1 866-353-3496
3600 W. Parmer Lane, Suite 100; Austin, TX 78727 / www.netstreams.com.

NOTE

if(cmd.command == “debug”) then

… handle the #debug command

end

end

If the command is specific to a particular subNode of the driver, it should be defined as
an element in the subNode. It will be passed the subNode itself as its only argument.

subNode.handle_set = function(self, cmd)

if(cmd.params[1] == “heat”) then

… handle the #set heat… command

end

end

subNode.default_command_handler = function(self,
cmd)

if(cmd.command == “debug”) then

… handle the #debug command

end

end

In the previous example,
Lua provides a
convenient short-cut
notation with identical
functionality:

function subNode:handle_set(cmd)
if(cmd.params[1] == “heat”) then

…
end
end

Writing StreamNet Device Drivers

3-4
All specifications subject to change without notification. All rights reserved. Copyright © 2007 NetStreams

Main +1 512.977-9393 / fax +1 512.977.9398 / Toll Free Technical Support +1 866-353-3496
3600 W. Parmer Lane, Suite 100; Austin, TX 78727 / www.netstreams.com.

4-1
All specifications subject to change without notification. All rights reserved. Copyright © 2007 NetStreams

Main +1 512.977-9393 / fax +1 512.977.9398 / Toll Free Technical Support +1 866-353-3496
3600 W. Parmer Lane, Suite 100; Austin, TX 78727 / www.netstreams.com.

NOTE

Chapter

4
Handling Communications

Most device drivers will need some mechanism for talking to a controlled device. In
the StreamNet system, that capability is provided by a generalized I/O Stream
mechanism.

A stream can be created using a string-based configuration string, the precise format of
which depends on the details of the connection. Once the stream is created, the details
of the underlying transport mechanism (such as RS-232, TCP/IP, or some other
mechanism) is identical for all streams. This allows the same driver and code to be
used to control a device regardless of the physical connection type.

A stream is created with the createStream function:
stream = createStream(“comm://
0;baud=9600;parity=n”);

Once created, the stream can be read from and written to using the read and write
functions:

input = stream:read()
stream:write(input)

Use the “:” syntax to
pass the stream as an
argument to the read
and write functions.

Many devices have asynchronous outputs, i.e., outputs that are not in direct response
to some command being sent down. The preferred mechanism of dealing with such
responses is to define and enable an asynchronous response handler:

function input(stream, line)
… handle async response in “line”
end

stream:startAsyncInput(input, {endString = “\n”})

Writing StreamNet Device Drivers

4-2
All specifications subject to change without notification. All rights reserved. Copyright © 2007 NetStreams

Main +1 512.977-9393 / fax +1 512.977.9398 / Toll Free Technical Support +1 866-353-3496
3600 W. Parmer Lane, Suite 100; Austin, TX 78727 / www.netstreams.com.

5-1
All specifications subject to change without notification. All rights reserved. Copyright © 2007 NetStreams

Main +1 512.977-9393 / fax +1 512.977.9398 / Toll Free Technical Support +1 866-353-3496
3600 W. Parmer Lane, Suite 100; Austin, TX 78727 / www.netstreams.com.

Chapter

5
Configuration

As for any other StreamNet service, a StreamNet service with a Lua driver is
configured by including an appropriate service tag within the config_current.xml file.
In the case of standard StreamNet device types, the clause will be automatically
generated, but in the case of custom device types, the clause may need to be manually
generated.

<service serviceNumber=”2” serviceName=”AprilAire”
serviceType=”gpio” enabled=”1”>

<control controlType=”SCRIPT”>
<SCRIPT file=”AprilAire.lua”>

<SCRIPT_DATA>
-- lines here are passed to the lua interpreter
before
-- the driver file is loaded
config = {};
config.port = “comm://0;baud=9600”;

</SCRIPT_DATA>
</SCRIPT>

</control>
</service>

The SCRIPT_DATA block defines a section of Lua that will be passed to the
interpreter before the driver is loaded, allowing for installation specific parameters,
such as the port settings above, to be passed to the driver.

NOTE: The serviceType in this example is currently required to be “gpio,” and the
serviceNumber is a device specific constant (always 2 in the case of a CL100
or CL100A)

Writing StreamNet Device Drivers

5-2
All specifications subject to change without notification. All rights reserved. Copyright © 2007 NetStreams

Main +1 512.977-9393 / fax +1 512.977.9398 / Toll Free Technical Support +1 866-353-3496
3600 W. Parmer Lane, Suite 100; Austin, TX 78727 / www.netstreams.com.

6-1
All specifications subject to change without notification. All rights reserved. Copyright © 2007 NetStreams

Main +1 512.977-9393 / fax +1 512.977.9398 / Toll Free Technical Support +1 866-353-3496
3600 W. Parmer Lane, Suite 100; Austin, TX 78727 / www.netstreams.com.

Chapter

6
Installing the Driver

After writing a driver, you must load it for use with the DigiLinX network. This
chapter provides step by step procedures for installing and running an example driver
for a Panamax® power conditioner. If you have any questions concerning DigiLinX
Dealer Setup, refer to the DigiLinX Dealer Setup Manual located on the Dealer
Documents page of the NetStreams website.

WARNING! You can only load drivers with DigiLinX Dealer Setup versions 1.5 or
higher.

1. Add a ControLinX configured for General Purpose Driver, Serial (see Figure 6-1).

Figure 6-1 Add a ControLinX

Writing StreamNet Device Drivers

6-2
All specifications subject to change without notification. All rights reserved. Copyright © 2007 NetStreams

Main +1 512.977-9393 / fax +1 512.977.9398 / Toll Free Technical Support +1 866-353-3496
3600 W. Parmer Lane, Suite 100; Austin, TX 78727 / www.netstreams.com.

2. Using Windows Explorer, copy the driver you have written to C:\Program
Files\DigiLinX Dealer Setup\upgrades\<latest folder date>\drivers.

NOTE: In this case you are copying to \07_17_2006\drivers.

Figure 6-2 Copying the driver to the hard drive

3. From DigiLinX Dealer Setup, highlight the ControLinX and select the IR/RS-232
tab.

4. Enter the filename of your driver file in the driver file text box of your ControLinX
configuration:

Installing the Driver

6-3
All specifications subject to change without notification. All rights reserved. Copyright © 2007 NetStreams

Main +1 512.977-9393 / fax +1 512.977.9398 / Toll Free Technical Support +1 866-353-3496
3600 W. Parmer Lane, Suite 100; Austin, TX 78727 / www.netstreams.com.

Figure 6-3 Entering the driver file name

5. Select Labels and enter button presets.

NOTE: This procedure creates the individual buttons that will control this device. The
ID field corresponds to the driver subNode, while the Button Label is the first
label that appears on the GUI buttons.

Writing StreamNet Device Drivers

6-4
All specifications subject to change without notification. All rights reserved. Copyright © 2007 NetStreams

Main +1 512.977-9393 / fax +1 512.977.9398 / Toll Free Technical Support +1 866-353-3496
3600 W. Parmer Lane, Suite 100; Austin, TX 78727 / www.netstreams.com.

Figure 6-4 Entering Button Presets

6. Select the Menu tab and select Enable a Menu for this Room.

NOTE: Ensure that rooms requiring control of this device have this menu enabled.

Installing the Driver

6-5
All specifications subject to change without notification. All rights reserved. Copyright © 2007 NetStreams

Main +1 512.977-9393 / fax +1 512.977.9398 / Toll Free Technical Support +1 866-353-3496
3600 W. Parmer Lane, Suite 100; Austin, TX 78727 / www.netstreams.com.

Figure 6-5 Enable menu for rooms

7. Select the button to send the configuration to all devices (see Figure 6-6).

NOTE: Wait for the ControLinX to restart.

Writing StreamNet Device Drivers

6-6
All specifications subject to change without notification. All rights reserved. Copyright © 2007 NetStreams

Main +1 512.977-9393 / fax +1 512.977.9398 / Toll Free Technical Support +1 866-353-3496
3600 W. Parmer Lane, Suite 100; Austin, TX 78727 / www.netstreams.com.

Figure 6-6 Sending configuration to all devices

The Control icon (see Figure 6-7) and buttons (see Figure 6-7) display.

Figure 6-7 Control icon

Installing the Driver

6-7
All specifications subject to change without notification. All rights reserved. Copyright © 2007 NetStreams

Main +1 512.977-9393 / fax +1 512.977.9398 / Toll Free Technical Support +1 866-353-3496
3600 W. Parmer Lane, Suite 100; Austin, TX 78727 / www.netstreams.com.

Figure 6-8 Buttons

Useful Development Tips
Always compile your script (using your editor’s compile option, or luac.exe)
before transferring the driver to the ControLinX. While this only checks syntax
errors, it will save time when they appear.

Use the categorized debug logging to filter your messages, and turning on only the
level you need.

If you have communication problems, even if they are only in one direction, verify
that you are using the right COM port parameters, and that you don’t need a null
modem adapter.

You can add the attribute autoStart to the SCRIPT block in config_current.xml
and set it equal to 0 to keep the script from loading automatically.

You can send the ASCII commands #script start and #script stop to
the service for your driver to start and stop the service. This is useful for starting
the script with autoStart=0. You can also stop your script, copy a new version,
and then start it again to run the new version without restarting the device.
Something to keep in mind when using this method is that global variables are kept
between stop and start. Although this can be useful (your current debug filter
settings are kept for example) you need to take care when performing operations
that modify the global state.

Writing StreamNet Device Drivers

6-8
All specifications subject to change without notification. All rights reserved. Copyright © 2007 NetStreams

Main +1 512.977-9393 / fax +1 512.977.9398 / Toll Free Technical Support +1 866-353-3496
3600 W. Parmer Lane, Suite 100; Austin, TX 78727 / www.netstreams.com.

7-1
All specifications subject to change without notification. All rights reserved. Copyright © 2007 NetStreams

Main +1 512.977-9393 / fax +1 512.977.9398 / Toll Free Technical Support +1 866-353-3496
3600 W. Parmer Lane, Suite 100; Austin, TX 78727 / www.netstreams.com.

Chapter

7
Generating Status Reports

In almost all cases, the generation of the status reports used by the User Interface is
automated. A status report takes the form of a #report ASCII command:

#report {{<report type=”state” field=value…}}

To update the generated status report is to update the responsible status object with the
appropriate field/value pairs. The status report is then generated and transmitted.

As examples, if the base device needs to generate status reports with a time stamp
field, include the code:

setStatus(“timeStamp”, os.uptime())

Care is automatically taken to insure that excessive status reports are not generated,
rather they are specifically only generated as the status itself is modified.

As another example, if a subNode needs to report a status containing a temperature
field, include the code:

zone:setStatus(“temperature”,
zone.currentTemperature)

NOTE: When a subNode is modifying its status variables it should use the “:” notation
to insure that the zone is passed to the setStatus routine.

Writing StreamNet Device Drivers

7-2
All specifications subject to change without notification. All rights reserved. Copyright © 2007 NetStreams

Main +1 512.977-9393 / fax +1 512.977.9398 / Toll Free Technical Support +1 866-353-3496
3600 W. Parmer Lane, Suite 100; Austin, TX 78727 / www.netstreams.com.

8-1
All specifications subject to change without notification. All rights reserved. Copyright © 2007 NetStreams

Main +1 512.977-9393 / fax +1 512.977.9398 / Toll Free Technical Support +1 866-353-3496
3600 W. Parmer Lane, Suite 100; Austin, TX 78727 / www.netstreams.com.

Chapter

8
Diagnostic Messages

Diagnostic messages can be output to the debug viewer using the debug function.
The debug function operates similarly to print when only one parameter is passed.
When two or more parameters are passed, the first argument is converted to a string
and use to a filter the display of that message, based on the current filter settings.
Filter settings can be changes using the setDebug function or the #debug ASCII
command. Filtering for all categories defaults to off.

Writing StreamNet Device Drivers

8-2
All specifications subject to change without notification. All rights reserved. Copyright © 2007 NetStreams

Main +1 512.977-9393 / fax +1 512.977.9398 / Toll Free Technical Support +1 866-353-3496
3600 W. Parmer Lane, Suite 100; Austin, TX 78727 / www.netstreams.com.

9-1
All specifications subject to change without notification. All rights reserved. Copyright © 2007 NetStreams

Main +1 512.977-9393 / fax +1 512.977.9398 / Toll Free Technical Support +1 866-353-3496
3600 W. Parmer Lane, Suite 100; Austin, TX 78727 / www.netstreams.com.

Chapter

9
Reference

This section defines the StreamNet extensions to the standard Lua function calls
defined in the Lua manual, which can be found at http://www.lua.org/manual/5.1/.

Syntax
In the descriptions below, the following notations are used:

aType = indicates that the function returns an item of the indicate type, or that a
variable is of the indicated type

aType: indicates the indicated function should be invoked or defined with the
“:” operator as the “self” argument of type “aType” must always be
given.

aType. indicates the standard lua table lookup rules apply

Control
For purposes of simplicity, all the basic control functions are directly defined in the
outer scope of a Lua driver. In most cases, the only required entries here are the
handle_command entries necessary to handle the commands important to the driver
itself.

default_handle_command (command)
default_handle_command is the last effort command handler and is used only if there
is no handle_command function defined to specifically handle a given command.

Writing StreamNet Device Drivers

9-2
All specifications subject to change without notification. All rights reserved. Copyright © 2007 NetStreams

Main +1 512.977-9393 / fax +1 512.977.9398 / Toll Free Technical Support +1 866-353-3496
3600 W. Parmer Lane, Suite 100; Austin, TX 78727 / www.netstreams.com.

NOTE

Strictly speaking, this function need never be defined or used since any command will
first be handled by the type specific handler.

It is always possible to
define an appropriate
command-specific
handler, so that the
default_command_hand
ler is not needed.
Programming best-
practices state that a
fallback
default_command_hand
ler should be defined
even if it is not intended
for use.

The single argument is an AsciiCommand table as documented in Chapter 2, Handling
Commands on page 3-1. The driver can define a handle_command method to handle
the incoming ASCII command “#command …”. The driver can define a
handle_command method to handle the incoming ASCII command “#command
…”command method to handle the incoming ASCII command “#command …”

The single argument is an AsciiCommand table as documented in Chapter 2, Handling
Commands on page 3-1.

For more information on command handling see Chapter 2, Handling Commands on
page 3-1.

handle_command(command)
The driver can define a handle_command method to handle the incoming ASCII
command “#command …”

The single argument is an AsciiCommand table as documented in The driver can
define a handle_command method to handle the incoming ASCII command
“#command …”. The driver can define a handle_command method to handle the
incoming ASCII command “#command …”_command method to handle the incoming
ASCII command “#command …”

The single argument is an AsciiCommand table as documented in Chapter 2, Handling
Commands on page 3-1.

aNode = getSubNode(strNodeName)
Returns the node associated with strNodeName by fetching subNodes[strNodeName].

Device drivers may replace this routine with one of their own if they wish to create
nodes on the fly as they are addressed by commands. Such an implementation might
look like:

function getSubNode(strNodeName)
if(subNodes[strNodeName] == nil) then

node = createSubNode(strNodeName)
… do some more initialization here

else
node = subNodes[strNodeName]

end
return node
end

Reference

9-3
All specifications subject to change without notification. All rights reserved. Copyright © 2007 NetStreams

Main +1 512.977-9393 / fax +1 512.977.9398 / Toll Free Technical Support +1 866-353-3496
3600 W. Parmer Lane, Suite 100; Austin, TX 78727 / www.netstreams.com.

setStatus(strField, value)
This extension updates the value of a particular field in the associated status object.
This is shorthand for status.setField(field, value). A status field can be deleted by
setting it’s value to nil.

aString = getStatus(strField, value)
Returns the value for the field specified, or nil if the field has not yet been defined.

SubNode

aSubNode = createSubNode(strName)
createSubNode is invoked to create a new named subNode. The newly created
subNode is automatically registered with the control by placing it in the subNodes
table using strName as an index. The newly created subNode will have an empty
status object associated with it and only minimal commands will be handled.

aTable = subNodes
subNodes is a table containing each of the subNodes created with createSubNode,
indexed by subNode name.

aString = aSubNode.name
Holds the name of the subNode as set in createSubNode. Once created the name of the
subNode should not be altered.

aStatus = aSubNode.status
This extension holds the status object for the subNode. Under normal circumstances
the setStatus and getStatus methods should be used in lieu of directly accessing the
status object.

aSubNode:setStatus(strField, value)
Updates or creates a status report field with the indicated value. If the value is actually
being changed this will trigger the automatic generation of a status report when the
execution of the current command, timer, or async input function is completed. A field
that is no longer appropriate can be deleted by calling aSubNode:setStatus(strField,
nil)

Writing StreamNet Device Drivers

9-4
All specifications subject to change without notification. All rights reserved. Copyright © 2007 NetStreams

Main +1 512.977-9393 / fax +1 512.977.9398 / Toll Free Technical Support +1 866-353-3496
3600 W. Parmer Lane, Suite 100; Austin, TX 78727 / www.netstreams.com.

aString = aSubNode:getStatus(strField, value)
Fetch the most recently assigned value of a status report field. If the report field is
currently undefined, nil will be returned.

aSubNode:default_handle_command(command)
default_handle_command is the last effort command handler and is used only if there
is no handle_command function defined to specifically handle a given command.
Strictly speaking, this function need never be defined or used since any command will
first be handled by the type specific handler.

The single argument is an AsciiCommand table as documented in Chapter 2, Handling
Commands on page 3-1. The driver can define a handle_command method to handle
the incoming ASCII command “#command …”command method to handle the
incoming ASCII command “#command …”

The single argument is an AsciiCommand table as documented in Chapter 2, Handling
Commands on page 3-1.

aSubNode:handle_command(command)
The driver can define a handle_command method to handle the incoming ASCII
command “#command …”

The single argument is an AsciiCommand table as documented in Chapter 2, Handling
Commands on page 3-1.

AsciiCommand
An AsciiCommand object contains the information and parameters contained in an
incoming ASCII command.

aString = command.command
The lower-cased string version of the command itself. For example, in the case of
“#SET FAN,OFF” command.command would contain “set”.

aTable = command.params
A 1-based vector of the parameters specified to the command; e.g., in the case of
“#SET FAN,OFF”, command.params would contain:

command.params = {
[1] = “FAN”,
[2] = “OFF”

}

Reference

9-5
All specifications subject to change without notification. All rights reserved. Copyright © 2007 NetStreams

Main +1 512.977-9393 / fax +1 512.977.9398 / Toll Free Technical Support +1 866-353-3496
3600 W. Parmer Lane, Suite 100; Austin, TX 78727 / www.netstreams.com.

Individual parameters can be referenced as command.params[n] where n is between 1
and the number of command specified.

aString = command.to
The entire to address as specified in the original command. Contains nil if no address
was specified.

aString = command.toNode
The node portion only of the address specified in the original command. If the to
address given was “@Aprilaire~zone1”, then toNode would contain “Aprilaire”.
Contains nil if no address was specified.

aString = command.toSubNode
The subNode portion of the address specified in the original command. If the to
address given was “@Aprilaire~zone1”, then toNode would contain “zone1”.
Contains nil if no address was specified or if no subNode was specified in the original
address.

aString = command.from
The entire from address as specified in the original command. Contains nil if no
address was specified.

aString = command.fromNode
The node portion only of the from address specified in the original command. If the
from address given was “:Aprilaire~zone1”, then fromNode would contain
“Aprilaire”. Contains nil if no address was specified.

aString = command.fromSubNode
The subNode portion of the from address specified in the original command. If the
from address given was “:Aprilaire~zone1”, then fromNode would contain “zone1”.
Contains nil if no address was specified or if no subNode was specified in the original
address.

Stream
Creating a stream allows a device driver to communicate with an external device by
RS-232 or TCP/IP. More connection types may be defined in the future. Once the
stream has been created, data can be read from or written to the stream with no regard

Writing StreamNet Device Drivers

9-6
All specifications subject to change without notification. All rights reserved. Copyright © 2007 NetStreams

Main +1 512.977-9393 / fax +1 512.977.9398 / Toll Free Technical Support +1 866-353-3496
3600 W. Parmer Lane, Suite 100; Austin, TX 78727 / www.netstreams.com.

for the underlying transport mechanism. Facilities are also provided for handling of
asynchronous streams with defined message boundaries with no need on the drivers’
part for explicitly polling the stream.

aStream = createStream(strPort)
Creates a new stream from the string specification in strPort. The form of strPort is:

{protocol}://{address}[;{options}…]

Where protocol and address are taken from the table below:

Protocol Address Comments

comm 0 .. # of supported device ports Opens an RS-232 serial connection

socket {host}:{port} Opens a TCP/IP connection to the indicated
host and port.

Reference

9-7
All specifications subject to change without notification. All rights reserved. Copyright © 2007 NetStreams

Main +1 512.977-9393 / fax +1 512.977.9398 / Toll Free Technical Support +1 866-353-3496
3600 W. Parmer Lane, Suite 100; Austin, TX 78727 / www.netstreams.com.

NOTE

In the case of the socket protocol, no options are currently supported.

In the case of the comm protocol, the following options may be specified:

aString = stream:read(max)
Reads data from the stream and returns it in the form of a string. If max is specified, no
more than max characters will be returned. This call will never block, but rather will
return whatever data is immediately available up to the specified maximum.

Mixing synchronous
input via read and
asynchronous input via
startAsyncInput will
yield inconsistent and
variable results. If
mixing is required,
async input should
always be stopped via
stopAsyncInput before
read is used.

stream:write(aString)
Writes data from a string to the stream.

anInteger = stream:available()
Returns the number of bytes of data immediately available on the port.

Key Value Default

baud 300,1200,2400,9600,19200 9600

parity odd,even,none None

bits 8 8

stop 1 1

Writing StreamNet Device Drivers

9-8
All specifications subject to change without notification. All rights reserved. Copyright © 2007 NetStreams

Main +1 512.977-9393 / fax +1 512.977.9398 / Toll Free Technical Support +1 866-353-3496
3600 W. Parmer Lane, Suite 100; Austin, TX 78727 / www.netstreams.com.

NOTE

NOTE

stream:startAsyncInput(aFunction, options)

Mixing synchronous
input via read and
asynchronous input via
startAsyncInput will
yield inconsistent and
variable results. If
mixing is required,
async input should
always be stopped via
stopAsyncInput before
read is used.

Enables asynchronous input on the associated stream. Has completed “messages” are
received aFunction will be invoked with the stream and message as parameters. The
options parameter contains an optional table that can be used to define a “message”:

The options parameter is in the form of a table, such as:
Stream:startAsyncInput(onInput, {

endString = “\r”,
trailing = 2

 })

Asynchronous input is
not truly asynchronous
as the input function
will never interrupt
execution of an
asynchronous stream
handler, command
handler, or timer
handler.

stream:stopAsyncInput()
Stops asynchronous input previously started with startAsyncInput.

Key Default Notes

endString Nil If non-nil defines a string which will be used to recognize the end of a
message. Common values might be “\r”, “\n”, or “\r\n” Completed
messages will contain all the data between endString terminators and the
terminator itself.

timeout 0 If > 0 specifies the maximum time to wait for any input. Every “timeout” ms
any available data will be passed to the input function.

readIdle 0 If > 0 specifies the maximum time to wait while no data is being received. If
the readIdle timeout elapses with no new data being received any available
data will be passed to the input function.

maxRead 1024 The maximum # of characters to process before invoking the input
function.

trailing 0 If > 0 specifies that additional data should be returned after a message has
be recognized based on an endString. So specifying an endString of “\n”
and a trailing of 2 would return the all text up to and including the newline
and the following two characters.

Reference

9-9
All specifications subject to change without notification. All rights reserved. Copyright © 2007 NetStreams

Main +1 512.977-9393 / fax +1 512.977.9398 / Toll Free Technical Support +1 866-353-3496
3600 W. Parmer Lane, Suite 100; Austin, TX 78727 / www.netstreams.com.

Status

aStatus = createStatus()
Creates and initializes a new status object.

Under normal circumstances this function is unneeded by the developer since the
status objects for the control and subNodes are automatically created.

aStatus = status
Contains the status object for the control.

status:setField(field, value)
Updates a field in the status report and triggers status report generation “soon”
Assigning a field the value of nil will remove it from the report.

aString = aStatus:getField(field)
Returns the value of a field in the status report.

Writing StreamNet Device Drivers

9-10
All specifications subject to change without notification. All rights reserved. Copyright © 2007 NetStreams

Main +1 512.977-9393 / fax +1 512.977.9398 / Toll Free Technical Support +1 866-353-3496
3600 W. Parmer Lane, Suite 100; Austin, TX 78727 / www.netstreams.com.

NOTE

Timer
Timers are used to schedule a function to be called at some predetermined time in the
future.

Due to the scheduling
inconsistencies in a
multi-tasking
environment, the only
guarantee that can be
made about when the
timer will be executed is
that it will be executed
no sooner than the time
specified in the
createTimer call. No
real guarantees can be
placed on the maximum
time that will elapse
before the timer is
executed.

NOTE

Timers are not truly
asynchronous events as
they will never interrupt
execution of an
asynchronous stream
handler, command
handler, or another
timer handler.

aTimer = createTimer(nMS, aFunction)
Creates a timer object and schedules it for execution in nMS milliseconds. When the
timer executes it will invoke aFunction with the timer itself as it’s sole parameter. If
the timer function returns a non-zero value, the return value will be used to reschedule
the timer at another future time.

anInteger = aTimer.duration
The duration last specified for the timer, either in createTimer, queue, or as a return
value from timer execution.

aTimer:cancel()
Cancels the timer and prevents any future execution until queue is called.

Reference

9-11
All specifications subject to change without notification. All rights reserved. Copyright © 2007 NetStreams

Main +1 512.977-9393 / fax +1 512.977.9398 / Toll Free Technical Support +1 866-353-3496
3600 W. Parmer Lane, Suite 100; Austin, TX 78727 / www.netstreams.com.

NOTE

aTimer:queue(nMS)
Queues the timer object to be executed in nMS milliseconds subject to the vagaries of
operating system scheduling. If the timer is already queued for execution, the timeout
will be rescheduled.

Debug

debug(category, …)

The category is coerced
to a lower case string
before any processing is
done. The special
category “all” controls
all categories. The
default filtering for all
messages is off.

Displays in the Debug Viewer the remaining (…) parameters if debug filtering is on
for category. If there is only one parameter, it is always displayed in the debug
viewer. Parameters are displayed concatenated with a tab character.

setDebug(category, <”on”|”off”|”toggle”>)
Enables, disables or toggles display of messages for the given category. If the
given category is “all” then the operation will apply to all messages. The equivalent
ASCII command is:

 #@Service#debug category <on|off|toggle>

Writing StreamNet Device Drivers

9-12
All specifications subject to change without notification. All rights reserved. Copyright © 2007 NetStreams

Main +1 512.977-9393 / fax +1 512.977.9398 / Toll Free Technical Support +1 866-353-3496
3600 W. Parmer Lane, Suite 100; Austin, TX 78727 / www.netstreams.com.

Lua 5.0 License

A-1
All specifications subject to change without notification. All rights reserved. Copyright © 2007 NetStreams

Main +1 512.977-9393 / fax +1 512.977.9398 / Toll Free Technical Support +1 866-353-3496
3600 W. Parmer Lane, Suite 100; Austin, TX 78727 / www.netstreams.com.

Appendix

A
Lua 5.0 License

Copyright © 1994-2007 Lua.org, PUC-Rio.

Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the "Software"), to deal in the Software
without restriction, including without limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons
to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY
KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS
OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Writing StreamNet Device Drivers

A-2
All specifications subject to change without notification. All rights reserved. Copyright © 2007 NetStreams

Main +1 512.977-9393 / fax +1 512.977.9398 / Toll Free Technical Support +1 866-353-3496
3600 W. Parmer Lane, Suite 100; Austin, TX 78727 / www.netstreams.com.

Editing Environments

B-1
All specifications subject to change without notification. All rights reserved. Copyright © 2007 NetStreams

Main +1 512.977-9393 / fax +1 512.977.9398 / Toll Free Technical Support +1 866-353-3496
3600 W. Parmer Lane, Suite 100; Austin, TX 78727 / www.netstreams.com.

Appendix

B
Editing Environments

There are a number of editors with varying degrees of support for editing Lua. Some
include:

Name URL Notes

Gnu emacs http://www.gnu.org/software/emacs/emacs.html
http://luaforge.net/projects/lua-mode/

For UNIX

Lua Edit http://www.luaedit.net/ Designed for Lua

UltraEdit http://www.ultraedit.com/
http://lua-users.org/files/wiki_insecure/editors/
UltraEdit_wordfile_Lua5.txt

Very powerful and
commercial
developer’s editor.

Writing StreamNet Device Drivers

B-2
All specifications subject to change without notification. All rights reserved. Copyright © 2007 NetStreams

Main +1 512.977-9393 / fax +1 512.977.9398 / Toll Free Technical Support +1 866-353-3496
3600 W. Parmer Lane, Suite 100; Austin, TX 78727 / www.netstreams.com.

Control Driver Example

 C-1
All specifications subject to change without notification. All rights reserved. Copyright © 2007 NetStreams

Main +1 512.977-9393 / fax +1 512.977.9398 / Toll Free Technical Support +1 866-353-3496
3600 W. Parmer Lane, Suite 100; Austin, TX 78727 / www.netstreams.com.

Appendix

C
Control Driver Example

This example shows how to control a Panamax MAX 5410 Pro AC power source via
its RS-232 interface. The driver will create six control subNodes which will represent
six buttons, each having a distinct function. These buttons can then be displayed on the
DigiLinX GUI. The subNodes will represent the following functions:

subNode Function Description
 1 Power On Initiates power-on sequence

 2 Power Off Initiates power-off sequence

 3 Switched Cycles power to the switched outlets

 4 High Current Cycles power to the high current outlets

 5 All Off Turns off all outlets

 6 Cycle Initiates a power-cycle sequence

The example uses a user created function, createButton, to encapsulate the repetitive
tasks for creating each of the button subNodes. Each subNode will have four
variables, Name, the name of the subNode used for addressing, xmit, the RS-232
string to transmit when the button is pressed, Label, the text that will appear on the
GUI button face, and indicatorState, which will determine whether or not the indicator
LED on the GUI button will be on or off. Each subNode will also contain one
function, handle_button, which is called whenever the corresponding GUI button is
pressed.

Because of the way Lua parses the source files, the functions that the example uses
must be defined before they are actually used, so that is why the functions will appear
first.

Writing StreamNet Device Drivers

C-2
All specifications subject to change without notification. All rights reserved. Copyright © 2007 NetStreams

Main +1 512.977-9393 / fax +1 512.977.9398 / Toll Free Technical Support +1 866-353-3496
3600 W. Parmer Lane, Suite 100; Austin, TX 78727 / www.netstreams.com.

The example also uses two timer driven functions, pollResponse and queryStatus. The
first function, pollResponse, reads data from the serial port every second looking for
messages from the device. Depending on what the response is, the driver may turn the
indicatorState variable on or off (1 or 0 respectively). The second function queryStatus
will send a query to the device every 10 seconds to ensure that the driver stays in sync
with the device. These functions are created by calling the createTimer function.
 --

-- The service itself is set up with a subNode for
each of the switchable

-- power supplies (switchable outlets and high power
outlets) and a subNode

-- for all power. Each zone responds to a #BUTTON
PRESS by sending out

-- the requested command and then issuing an
?OUTLETSTAT to find out which

-- outlets are on.

-- To allow the GUI to display an appropriate label
on the button, each

-- subNode also reports status in the common form:
-- <report type="indicatorState" label="<label

text>" indicatorState="<0/1>" />
--

--

-- We have to create our functions first then we can
use them below

-- function createButton(Name, Label, xmitString)
--
-- create a button node
--

function createButton(Name, Label, xmitString)

-- create a subNode for each button
local node = createSubNode(Name)

--
-- the serial to xmit string that dealer setup writes

for us
-- has escape sequences so that special characters

like newlines
-- and nulls can be embedded in the string to

send. Each escape

Control Driver Example

 C-3
All specifications subject to change without notification. All rights reserved. Copyright © 2007 NetStreams

Main +1 512.977-9393 / fax +1 512.977.9398 / Toll Free Technical Support +1 866-353-3496
3600 W. Parmer Lane, Suite 100; Austin, TX 78727 / www.netstreams.com.

-- consists of %XX where XX is two hexadecimal
characters. We

-- have to replace each escape with it's
corresponding single

-- character
--
if(xmitString) then

node.xmit = decodeString(xmitString)
end

-- set the newly created button up to handle the
#BUTTON command

function node:handle_button(cmd)
--
-- we just handle #BUTTON PRESS by sending our

string
--
if(cmd.params[1]:upper() == "PRESS" and

self.xmit ~= nil) then

g_serial:write(self.xmit)

-- Only change to the button set up
routine is to call

-- queryStatus after sending the text
to find out what

-- state the panamax is currently in
pollResponse()

end
end

-- set the label field in the status report
node:setStatus("label", Label)

-- assume an initial "off" state
node:setStatus("indicatorState", "0")
end

-- function pollResponse()
-- Function that checks to see if there is anything

on the COM port
--
function pollResponse()
-- read and parse the response

Writing StreamNet Device Drivers

C-4
All specifications subject to change without notification. All rights reserved. Copyright © 2007 NetStreams

Main +1 512.977-9393 / fax +1 512.977.9398 / Toll Free Technical Support +1 866-353-3496
3600 W. Parmer Lane, Suite 100; Austin, TX 78727 / www.netstreams.com.

local response = g_serial:read()

if(response ~= nil) then
if(response:find("MAINACON")) then

getSubNode("1"):setStatus("indicatorState", "1")

getSubNode("2"):setStatus("indicatorState", "0")

elseif(response:find("MAINACOFF")) then

getSubNode("1"):setStatus("indicatorState", "0")

getSubNode("2"):setStatus("indicatorState", "1")

end

if(response:find("SWITCHEDON")) then

getSubNode("3"):setStatus("indicatorState", "1")

elseif(response:find("SWITCHEDOFF")) then

getSubNode("3"):setStatus("indicatorState", "0")

end

if(response:find("HICURRENTON")) then

getSubNode("4"):setStatus("indicatorState", "1")

elseif(response:find("HICURRENTOFF")) then

getSubNode("4"):setStatus("indicatorState", "0")

end
end

-- check for responses again in a second

Control Driver Example

 C-5
All specifications subject to change without notification. All rights reserved. Copyright © 2007 NetStreams

Main +1 512.977-9393 / fax +1 512.977.9398 / Toll Free Technical Support +1 866-353-3496
3600 W. Parmer Lane, Suite 100; Austin, TX 78727 / www.netstreams.com.

return 200
end

-- function queryStatus()
--
-- query the Panamax to see if anything has changed
--

function queryStatus()
-- request the status so we know the initial state

of everything
g_serial:write("?OUTLETSTAT\r");

-- try again in a second if this is from a timer
return 10000
end

-- Now run the main code

-- Check to see if the COM port has been overridden
by Dealer Setup

if(config == nil) then
config = {}
end

-- If the COM port doesn't exist, setup the default

if(config.port == nil) then
config.port = "comm://0;baud=9600;parity=none"
end

--
-- open the serial port and ready it for writing
--
g_serial = createStream(config.port)
if(g_serial == nil) then
print("Unable to open stream \""..config.port.."\"")
return
end
-- Create buttons

createButton("1", "Power On","POWERON\r")

Writing StreamNet Device Drivers

C-6
All specifications subject to change without notification. All rights reserved. Copyright © 2007 NetStreams

Main +1 512.977-9393 / fax +1 512.977.9398 / Toll Free Technical Support +1 866-353-3496
3600 W. Parmer Lane, Suite 100; Austin, TX 78727 / www.netstreams.com.

createButton("2", "Power Off","POWEROFF\r")
createButton("3", "Switched","CYCLESW\r")
createButton("4", "High Current","CYCLEHC\r")
createButton("5", "All Off","ALLOFF\r")
createButton("6", "Cycle","CYCLE\r")

-- create a timer to call queryStatus every 10
seconds

createTimer(10000, queryStatus)

-- every one second call pollResponse to check for
asynchronous responses

-- (stuff it sends without being asked)

createTimer(1000, pollResponse)

Audio Driver Example

 D-1
All specifications subject to change without notification. All rights reserved. Copyright © 2007 NetStreams

Main +1 512.977-9393 / fax +1 512.977.9398 / Toll Free Technical Support +1 866-353-3496
3600 W. Parmer Lane, Suite 100; Austin, TX 78727 / www.netstreams.com.

Appendix

D
Audio Driver Example

The following example audio and control drivers in commented code-form are
available as further resources.

All drivers can be found in your DigiLinX Dealer Setup folder under the ./upgrades/
[MM-DD-YYYY]/drivers/ folder. Open the .lua file with your preferred text editor to
see the complete commented code created by NetStreams engineers.

Parasound zTuner
-- zTuner.lua

-- driver for Parasound Ztuner V1 and V2

-- file version 1.0.0

-- There are many places where we check to see if we are a V1 or V2 tuner
since their protocols

-- are different. The V2 protocol is more straight forward than the V1 as
will be evident in

-- how much extra work is required to setup the outgoing tune commands and
with the extra work

-- required to know what piece of information we are currently expecting
back from the tuner

-- (this is the FREQUENCY_FIRST, LAST, BAND, etc stuff)

--

-- DigiLinX command handler:

--

-- function handle_band(command)

-- function handle_clear(command)

-- function handle_key(command)

-- function handle_next(command)

-- function handle_preset(command)

-- function handle_prev(command)

-- function handle_scan(command)

-- function handle_seek(command)

-- function handle_tune(command)

--

-- Other functions:

--

-- function CheckPower()

-- Send command to check power state of tuner

-- function OnAsyncInput(stream, message)

Writing StreamNet Device Drivers

D-2
All specifications subject to change without notification. All rights reserved. Copyright © 2005 NetStreams

Main +1 512.977-9393 / fax +1 512.977.9398 / Toll Free Technical Support +1 866-353-3496
3600 W. Parmer Lane, Suite 100; Austin, TX 78727 / www.netstreams.com.

-- Get and Process Input from Serial Port

-- function PerformReset()

-- Perform a soft reset of the zTuner when we seem to have lost
communications

-- function QueryStatus()

-- Periodically query for the frequency of the tuner. This is more
important with V1 tuners that have no unsolicited messages

-- function RefreshFrequency()

-- Send command to get the frequency from tuner

-- function RequestV2Status()

-- Send command to refresh the V2 tuner's status info

-- function SendPower(bOn)

-- Send command to power the tuner on (or off)

-- function WriteMessage(message)

-- Decode and send commands to the tuner

-- uncomment the next line for any hope of debugging startup issues

-- setDebug("all", "on")

setDebug("error", "on")

debug("Driver loading")

-- setup our constants

IDLE = 0

FREQUENCY_FIRST = 1

FREQUENCY_LAST = 2

BAND = 3

POWER_STATE = 4

FM = 0

AM = 1

BANDNAME = {

[FM] = "FM ",

[AM] = "AM "

 }

-- setup our module variables

serialPort = nil

bIsV2 = false;

szFreq = "---.-"

nResponseTimeout = 0

nExpectedRX = IDLE

nRefreshPowerTimeout = 5

nRefreshFreqTimeout = 0

nTimeouts = 0

nBand = FM

szInput = ""

szPwrOn = "0"

-- We have to create our functions first then we can use them below

Audio Driver Example

 D-3
All specifications subject to change without notification. All rights reserved. Copyright © 2007 NetStreams

Main +1 512.977-9393 / fax +1 512.977.9398 / Toll Free Technical Support +1 866-353-3496
3600 W. Parmer Lane, Suite 100; Austin, TX 78727 / www.netstreams.com.

-- function OnAsyncInput(stream, message)

-- Diego Alfarache

-- 09-20-2006

-- Get Input from Serial Port

function OnAsyncInput(stream, message)

debug("verbose", message)

local start = 0

if(message == nil) then

return

end

if(message:find("[*]")) then

bIsV2 = true

local Power = message:match("PW(.)")

local Band = message:match("BD(.)")

local Frequency = message:match("FR(......)")

local Preset = message:match("PR(..)")

if(Power) then

debug("verbose", "Power = "..Power)

if(Power == "0") then

-- power is off

bPwrOn = "0"

SendPower(true)

else

bPwrOn = "1"

end

end

if(Band) then

debug("verbose", "Band = "..Band)

if(Band == "1") then

nBand = FM

elseif(Band == "2") then

nBand = AM

end

end

if(Frequency) then

-- skip past any leading zeros

local start = Frequency:find("[123456789]")

Frequency = Frequency:sub(start,-1)

if(nBand == AM) then

szFreq = "AM "..Frequency

Writing StreamNet Device Drivers

D-4
All specifications subject to change without notification. All rights reserved. Copyright © 2005 NetStreams

Main +1 512.977-9393 / fax +1 512.977.9398 / Toll Free Technical Support +1 866-353-3496
3600 W. Parmer Lane, Suite 100; Austin, TX 78727 / www.netstreams.com.

elseif(nBand == FM) then

szFreq = "FM "..Frequency

else

szFreq = Frequency

end

setCaption(szFreq)

debug("verbose", "Frequency is "..szFreq)

end

else

-- This is all V1 Stuff

if(nExpectedRX == FREQUENCY_FIRST) then

if(message:len() >= 2) then

message = message:match("%d+")

local nMessage = tonumber(message)

-- if the first part of the frequency is less than 20
then we assume that the band is AM

if(nMessage < 20) then

nBand = AM

szFreq = "AM "

else

nBand = FM

szFreq = "FM "

end

szFreq = szFreq..message

end

nExpectedRX = FREQUENCY_LAST

elseif(nExpectedRX == FREQUENCY_LAST) then

if(message:len() > 2) then

message = message:match("%d%d")

if(nBand == AM) then

Audio Driver Example

 D-5
All specifications subject to change without notification. All rights reserved. Copyright © 2007 NetStreams

Main +1 512.977-9393 / fax +1 512.977.9398 / Toll Free Technical Support +1 866-353-3496
3600 W. Parmer Lane, Suite 100; Austin, TX 78727 / www.netstreams.com.

szFreq = szFreq..message

else

szFreq = szFreq.."."..message

end

setCaption(szFreq)

end

nExpectedRX = IDLE

nResponseTimeout = 0

nTimeouts = 0

elseif(nExpectedRX == POWER_STATE) then

if(message:find("[0]")) then

SendPower(true)

end

nExpectedRX = IDLE

nResponseTimeout = 0

nTimeouts = 0

else

debug("verbose", "Unexpected Response "..message)

end

end

UpdateSongReport()

end

-- function UpdateSongReport()

-- Cristian Prundeanu

-- 10/23/2006

--

function UpdateSongReport()

local songReport = songReportInstance()

local strCaption = BANDNAME[nBand] or ""

songReport:setField("band", strCaption)

strCaption = strCaption..szFreq

-- currently, the only used field in the zTuner GUI is "caption"

songReport:setField("caption", strCaption)

songReport:setField("frequency", szFreq)

songReport:setField("pwrOn", szPwrOn)

end

Writing StreamNet Device Drivers

D-6
All specifications subject to change without notification. All rights reserved. Copyright © 2005 NetStreams

Main +1 512.977-9393 / fax +1 512.977.9398 / Toll Free Technical Support +1 866-353-3496
3600 W. Parmer Lane, Suite 100; Austin, TX 78727 / www.netstreams.com.

-- function WriteMessage(message)

-- Diego Alfarache

-- 09-20-2006

-- Decode string and write to the stream (serial port)

function WriteMessage(message)

debug("verbose", "Sending "..message)

-- call decodeString() to convert %XX to actual ASCII values

xmitMessage = decodeString(message)

serialPort:write(xmitMessage)

end

-- function handle_tune(command)

-- Diego Alfarache

-- 09-20-2006

-- Receive and process #TUNE commands

function handle_tune(command)

if(command == nil) then

return

end

local AsciiMessage = ""

local dir = command.params[1]:upper()

if(dir == "DN") then

if(bIsV2 == true) then

AsciiMessage = "W 1 6 4%0D"

else

AsciiMessage = "W 1 7 4%0D"

end

elseif(dir == "UP") then

if(bIsV2 == true) then

AsciiMessage = "W 1 6 3%0D"

else

AsciiMessage = "W 1 7 3%0D"

end

else

-- look to see if the frequency has a dot in it. If it does, assume it
is FM

Audio Driver Example

 D-7
All specifications subject to change without notification. All rights reserved. Copyright © 2007 NetStreams

Main +1 512.977-9393 / fax +1 512.977.9398 / Toll Free Technical Support +1 866-353-3496
3600 W. Parmer Lane, Suite 100; Austin, TX 78727 / www.netstreams.com.

local dot = command.params[1]:find("[.]")

if(bIsV2 == true) then

AsciiMessage = "W 1 7 "

else

AsciiMessage = "W 1 6 "

end

if(dot ~= nil) then

-- FM --

AsciiMessage = AsciiMessage..command.params[1]:sub(1,dot-1)

if(bIsV2) then

AsciiMessage = AsciiMessage.."."

else

AsciiMessage = AsciiMessage.." "

end

AsciiMessage = AsciiMessage..command.params[1]:sub(dot+1,-1)

-- Check to see if we need a trailing zero

if(command.params[1]:len() < dot + 2) then

AsciiMessage = AsciiMessage.."0"

end

AsciiMessage = AsciiMessage.."%0D"

else

-- AM --

if(bIsV2) then

AsciiMessage = AsciiMessage..command.params[1]

else

if(command.params[1]:len() < 4) then

AsciiMessage =
AsciiMessage..command.params[1]:sub(1, 1).." "..command.params[1]:sub(2, 4)

else

AsciiMessage =
AsciiMessage..command.params[1]:sub(1, 2).." "..command.params[1]:sub(3, 5)

end

end

AsciiMessage = AsciiMessage.."%0D"

end

end

WriteMessage(AsciiMessage)

-- if we are a V1 we need to update the frequency

if(false == bIsV2) then

Writing StreamNet Device Drivers

D-8
All specifications subject to change without notification. All rights reserved. Copyright © 2005 NetStreams

Main +1 512.977-9393 / fax +1 512.977.9398 / Toll Free Technical Support +1 866-353-3496
3600 W. Parmer Lane, Suite 100; Austin, TX 78727 / www.netstreams.com.

nRefreshFreqTimeout = 0

RefreshFrequency()

end

end

-- function handle_seek(command)

-- Diego Alfarache

-- 09-20-2006

-- Receive and process #SEEK commands

function handle_seek(command)

if(command == nil) then

return

end

local AsciiMessage = ""

local dir = command.params[1]:upper()

if(dir == "DN") then

if(bIsV2 == true) then

AsciiMessage = "W 1 6 2%0D"

else

AsciiMessage = "W 1 7 2%0D"

end

elseif(dir == "UP") then

if(bIsV2 == true) then

AsciiMessage = "W 1 6 1%0D"

else

AsciiMessage = "W 1 7 1%0D"

end

end

WriteMessage(AsciiMessage)

-- if we are a V1 we need to update the frequency

if(false == bIsV2) then

nRefreshFreqTimeout = 0

RefreshFrequency()

end

end

-- function handle_scan(command)

-- Diego Alfarache

-- 09-20-2006

-- Receive and process #SCAN commands

Audio Driver Example

 D-9
All specifications subject to change without notification. All rights reserved. Copyright © 2007 NetStreams

Main +1 512.977-9393 / fax +1 512.977.9398 / Toll Free Technical Support +1 866-353-3496
3600 W. Parmer Lane, Suite 100; Austin, TX 78727 / www.netstreams.com.

-- since the Parasound Ztuner doesn't have a scan feature we will just call
our seek function

function handle_scan(command)

handle_seek(command)

end

-- function handle_preset(command)

-- Diego Alfarache

-- 09-20-2006

-- Receive and process #PRESET commands

function handle_preset(command)

if(command == nil) then

return

end

local AsciiMessage = ""

local dir = command.params[1]:upper()

if(dir == "DN") then

AsciiMessage = "W 1 3 4%0D"

elseif(dir == "UP") then

AsciiMessage = "W 1 3 3%0D"

end

WriteMessage(AsciiMessage)

-- if we are a V1 we need to update the frequency

if(false == bIsV2) then

nRefreshFreqTimeout = 0

RefreshFrequency()

end

end

-- function handle_next(command)

-- Diego Alfarache

-- 09-20-2006

-- Receive and process #NEXT commands

function handle_next(command)

if(command == nil) then

return

end

Writing StreamNet Device Drivers

D-10
All specifications subject to change without notification. All rights reserved. Copyright © 2005 NetStreams

Main +1 512.977-9393 / fax +1 512.977.9398 / Toll Free Technical Support +1 866-353-3496
3600 W. Parmer Lane, Suite 100; Austin, TX 78727 / www.netstreams.com.

local AsciiMessage = "W 1 3 3%0D"

WriteMessage(AsciiMessage)

-- if we are a V1 we need to update the frequency

if(false == bIsV2) then

nRefreshFreqTimeout = 0

RefreshFrequency()

end

end

-- function handle_prev(command)

-- Diego Alfarache

-- 09-20-2006

-- Receive and process #PREV commands

function handle_prev(command)

if(command == nil) then

return

end

local AsciiMessage = "W 1 3 4%0D"

WriteMessage(AsciiMessage)

-- if we are a V1 we need to update the frequency

if(false == bIsV2) then

nRefreshFreqTimeout = 0

RefreshFrequency()

end

end

-- function handle_band(command)

-- Diego Alfarache

-- 09-20-2006

-- Receive and process #BAND commands

function handle_band(command)

if(command == nil) then

return

end

local AsciiMessage = ""

if(command.params[1] == "a" or command.params[1] == "A") then

AsciiMessage = "W 1 8 2%0D";

elseif(command.params[1] == "f" or command.params[1] == "F") then

Audio Driver Example

 D-11
All specifications subject to change without notification. All rights reserved. Copyright © 2007 NetStreams

Main +1 512.977-9393 / fax +1 512.977.9398 / Toll Free Technical Support +1 866-353-3496
3600 W. Parmer Lane, Suite 100; Austin, TX 78727 / www.netstreams.com.

AsciiMessage = "W 1 8 1%0D";

else

AsciiMessage = "W 1 8 10%0D";

end

WriteMessage(AsciiMessage)

-- if we are a V1 we need to update the frequency

if(false == bIsV2) then

nRefreshFreqTimeout = 0

RefreshFrequency()

end

end

-- function handle_key(command)

-- Diego Alfarache

-- 09-20-2006

-- Receive and process #KEY commands

function handle_key(command)

if(command == nil or command.params[1] == nil) then

return

end

local keyvalue = command.params[1]:upper();

if(szInput:len() > 6) then

szInput = szInput:sub(2,-1)

end

szInput = szInput..keyvalue

end

-- function handle_key(command)

-- Diego Alfarache

-- 09-22-2006

-- Receive and process #CLEAR commands

function handle_clear(command)

szInput = ""

end

Writing StreamNet Device Drivers

D-12
All specifications subject to change without notification. All rights reserved. Copyright © 2005 NetStreams

Main +1 512.977-9393 / fax +1 512.977.9398 / Toll Free Technical Support +1 866-353-3496
3600 W. Parmer Lane, Suite 100; Austin, TX 78727 / www.netstreams.com.

-- function handle_enter(command)

-- Diego Alfarache

-- 09-20-2006

-- Receive and process #ENTER commands

function handle_enter(command)

if(command == nil) then

return

end

debug("verbose", "szInput is "..szInput)

local AsciiMessage = ""

if(bIsV2) then

AsciiMessage = "W 1 7 "

else

AsciiMessage = "W 1 6 "

end

if(nBand == AM) then

if(bIsV2) then

AsciiMessage = AsciiMessage..szInput

else

if(szInput:len() < 4) then

AsciiMessage = AsciiMessage..szInput:sub(1, 1).."
"..szInput:sub(2, 3)

else

AsciiMessage = AsciiMessage..szInput:sub(1, 2).."
"..szInput:sub(3, 4)

end

end

else

if(szInput:sub(1,1) == "1") then

if(bIsV2) then

AsciiMessage = AsciiMessage..szInput:sub(1, 3
).."."..szInput:sub(4, 6)

else

AsciiMessage = AsciiMessage..szInput:sub(1, 3).."
"..szInput:sub(4, 6)

end

Audio Driver Example

 D-13
All specifications subject to change without notification. All rights reserved. Copyright © 2007 NetStreams

Main +1 512.977-9393 / fax +1 512.977.9398 / Toll Free Technical Support +1 866-353-3496
3600 W. Parmer Lane, Suite 100; Austin, TX 78727 / www.netstreams.com.

-- make sure we have enough trailing zeros

if(AsciiMessage:len() < 12) then

AsciiMessage = AsciiMessage.."0"

end

else

if(bIsV2) then

AsciiMessage = AsciiMessage..szInput:sub(1, 2
).."."..szInput:sub(3, 5)

else

AsciiMessage = AsciiMessage..szInput:sub(1, 2).."
"..szInput:sub(3, 5)

end

-- make sure we have enough trailing zeros

if(AsciiMessage:len() < 11) then

AsciiMessage = AsciiMessage.."0"

end

end

end

-- clear out szInput

szInput = ""

AsciiMessage = AsciiMessage.."%0D"

WriteMessage(AsciiMessage)

-- if we are a V1 we need to update the frequency

if(false == bIsV2) then

nRefreshFreqTimeout = 0

RefreshFrequency()

end

end

-- function handle_menu_list(command)

-- Cristian Prundeanu

-- 10-23-2006

-- handler for #MENU_LIST indexStart, indexEnd, path, searchParams

-- path format: "PRESET"|"MEDIA"|"MEDIA2" [">" <submenu1> [">" <submenu2>
[...]]]; ex: "MEDIA>ALLDISCS>Disc_10>Title_5>Chapter_2"

function handle_menu_list(command)

debug("verbose", "handle_menu_list: command=",command)

debug("verbose", '#MENU_LIST '..

 (command.params[1] and ('"'..command.params[1]..'"') or 'nil')..', '..

 (command.params[2] and ('"'..command.params[2]..'"') or 'nil')..', '..

 (command.params[3] and ('"'..command.params[3]..'"') or 'nil')..', '..

Writing StreamNet Device Drivers

D-14
All specifications subject to change without notification. All rights reserved. Copyright © 2005 NetStreams

Main +1 512.977-9393 / fax +1 512.977.9398 / Toll Free Technical Support +1 866-353-3496
3600 W. Parmer Lane, Suite 100; Austin, TX 78727 / www.netstreams.com.

 (command.params[4] and ('"'..command.params[4]..'"') or 'nil')

)

if (#command.params > 4) then

debug("warning", "Extended #MENU_LIST params received: ",
command.params)

end

local nStart = tonumber(command.params[1])

local nEnd = tonumber(command.params[2])

if (command.vPath[1]:upper() == "PRESETS") then

-- default preset handling is sufficient

defaultHandleMenuListPresets(command, nStart, nEnd)

elseif (command.vPath[1]:upper() == "MEDIA" or

command.vPath[1]:upper() == "MEDIA2") then

debug("error", "Media menus not supported in zTuner")

command:sendFinalMenuResp()

else

debug("error", "Unknown root node in #MENU_LIST: ",command.params[3])

end

end

-- function handle_menu_sel(command)

-- Cristian Prundeanu

-- 10-24-2006

-- handler for #MENU_SEL path

-- path format: see handle_menu_list

handle_menu_sel = function(command)

debug("verbose", '#MENU_SEL '..

 (command.params[1] and ('"'..command.params[1]..'"') or 'nil')

)

if (#command.params > 1) then

debug("warning", "Extended #MENU_SEL params received: ", command.params)

end

if(command.vPath[1]:upper() == "PRESETS") then

-- handle "#MENU_SEL {{presets>...}}" commands, where the

-- presets are stored in the table passed by the dealer setup

command:handlePresetMenuSel(command.vPath[2])

elseif (command.vPath[1]:upper() == "MEDIA" or

command.vPath[1]:upper() == "MEDIA2") then

debug("error", "Media menus not supported in zTuner")

end

end

-- function handle_menu_set(command)

-- Cristian Prundeanu

-- 10-24-2006

-- handler for #MENU_SET index

handle_menu_set = function(command)

debug("verbose", '#MENU_SET '..

Audio Driver Example

 D-15
All specifications subject to change without notification. All rights reserved. Copyright © 2007 NetStreams

Main +1 512.977-9393 / fax +1 512.977.9398 / Toll Free Technical Support +1 866-353-3496
3600 W. Parmer Lane, Suite 100; Austin, TX 78727 / www.netstreams.com.

 (command.params[1] and ('"'..command.params[1]..'"') or 'nil')

)

if (#command.params > 1) then

debug("warning", "Extended #MENU_SET params received: ", command.params)

end

local strDisplay = (BANDNAME[nBand] or "")..szFreq

command:handlePresetMenuSet(strDisplay, "#TUNE "..szFreq)

-- permanently save presets

presetSaveOverrides()

end

-- function handle_user(command)

-- Cristian Prundeanu

-- 10-18-2006

-- handler for #USER functioncall [functioncall [...]] - Lua-execute one or
more functioncalls and print each result

setDebug("USER", "on")

function handle_user(command)

local f

for i = 1, #command.params do

local strLine = string.format('debug("USER", "statement %d result: ",
%s) ', i, command.params[i])

f = loadstring(strLine)

if (not f) then

f = loadstring(command.params[i])-- this enables execution of
assignments and declarations

else

command.params[i] = strLine

end

if (not f) then

debug("USER", "error: could not load string: ",
command.params[i])

end

end

-- loading all statements as one chunk enables local variable/scope usage

f = loadstring(string.format(string.rep('%s ',#command.params),
unpack(command.params)))

if (f) then

f()

end

debug("USER", "execution finished")

end

-- function default_command_handler(command)

-- Cristian Prundeanu

-- 10/23/2006

--

function default_command_handler(command)

debug("error", "Unhandled command received: ", command)

Writing StreamNet Device Drivers

D-16
All specifications subject to change without notification. All rights reserved. Copyright © 2005 NetStreams

Main +1 512.977-9393 / fax +1 512.977.9398 / Toll Free Technical Support +1 866-353-3496
3600 W. Parmer Lane, Suite 100; Austin, TX 78727 / www.netstreams.com.

end

-- function CheckPower()

-- Diego Alfarache

-- 09/21/2006

--

function CheckPower()

-- Ignore commands if we are waiting on a response

if(true == bIsV2 or nResponseTimeout ~= 0) then

return

end

WriteMessage("R 1 1%0D")

nResponseTimeout = 5

nExpectedRX = POWER_STATE

nRefreshPowerTimeout = 5

end

-- function PerformReset()

-- Diego Alfarache

-- 09/21/2006

--

-- Note: This uses an undocumented command sequence to request a

-- hard reset of the zTuner.

function PerformReset()

WriteMessage("W 1 20 1%0D")

nTimeouts = 0

nResponseTimeout = 0

nRefreshPowerTimeout = 10

nRefreshFreqTimeout = 12

end

-- function CheckPower()

-- Diego Alfarache

-- 09/21/2006

--

function RequestV2Status()

WriteMessage("R 1 13%0D")

nRefreshFreqTimeout = 5

end

Audio Driver Example

 D-17
All specifications subject to change without notification. All rights reserved. Copyright © 2007 NetStreams

Main +1 512.977-9393 / fax +1 512.977.9398 / Toll Free Technical Support +1 866-353-3496
3600 W. Parmer Lane, Suite 100; Austin, TX 78727 / www.netstreams.com.

-- function RefreshFrequency()

-- Diego Alfarache

-- 09/21/2006

--

function RefreshFrequency()

-- Ignore commands if we are waiting on a response

if(nResponseTimeout ~= 0) then

return

end

if(false == bIsV2) then

WriteMessage("R 1 6%0D")

nExpectedRX = FREQUENCY_FIRST;

nResponseTimeout = 5

nRefreshFreqTimeout = 5

else

RequestV2Status()

end

end

-- function SendPower(bOn)

-- Diego Alfarache

-- 09/21/2006

--

function SendPower(bOn)

debug("warning", "Setting Power state to %d", bOn)

local szPower = ""

local nPower = 0;

if(true == bOn) then

nPower = 1

end

szPower = string.format("W 1 1 %d%%0D", nPower)

WriteMessage(szPower)

nRefreshPowerTimeout = 5;

nRefreshFreqTimeout = 6;

end

Writing StreamNet Device Drivers

D-18
All specifications subject to change without notification. All rights reserved. Copyright © 2005 NetStreams

Main +1 512.977-9393 / fax +1 512.977.9398 / Toll Free Technical Support +1 866-353-3496
3600 W. Parmer Lane, Suite 100; Austin, TX 78727 / www.netstreams.com.

-- function QueryStatus()

-- Diego Alfarache

-- 09-21-2006

-- Do a periodic check for status

function QueryStatus()

-- request the status so we know the initial state of everything

if(nResponseTimeout ~= 0) then

nResponseTimeout = nResponseTimeout - 1

if(nResponseTimeout <= 0) then

nTimeouts = nTimeouts + 1

-- errorLog(&SystemLog, "CControlZTuner: Timeout waiting ZTuner
response, %d, %d", m_nExpectedRX, m_nTimeouts);

nRefreshPowerTimeout = 0

if(nTimeouts >= 10) then

PerformReset()

else

CheckPower()

RequestV2Status()

end

end

else

if(nRefreshPowerTimeout > 0) then

nRefreshPowerTimeout = nRefreshPowerTimeout - 1

end

if(nRefreshFreqTimeout > 0) then

nRefreshFreqTimeout = nRefreshFreqTimeout - 1

end

if(nRefreshFreqTimeout <= 0) then

RefreshFrequency()

elseif(nRefreshPowerTimeout <= 0) then

CheckPower()

end

end

-- try again in 5 seconds if this is from a timer

return 5000

Audio Driver Example

 D-19
All specifications subject to change without notification. All rights reserved. Copyright © 2007 NetStreams

Main +1 512.977-9393 / fax +1 512.977.9398 / Toll Free Technical Support +1 866-353-3496
3600 W. Parmer Lane, Suite 100; Austin, TX 78727 / www.netstreams.com.

end

-- Now we can run our main code

-- Check to see if the COM port has been overridden by Dealer Setup

if(config == nil) then

config = {}

end

-- If the COM port doesn't exist, setup the default

if(config.port == nil) then

config.port = "comm://0;baud=9600;parity=none"

end

-- open the serial port and ready it for writing

serialPort = createStream(config.port)

if(serialPort == nil) then

debug("error", "Unable to open stream \""..config.port.."\"")

return

end

-- setup the stream to call OnAsyncInput whenever a carrige return is
detected

serialPort.startAsyncInput(serialPort, OnAsyncInput, {endString = "\r"})

-- load saved presets and add them to the ones defined in SCRIPT_DATA

presetLoadOverrides()

-- create our timer to call QueryStatus every 5 seconds

createTimer(5000, QueryStatus)

Writing StreamNet Device Drivers

D-20
All specifications subject to change without notification. All rights reserved. Copyright © 2005 NetStreams

Main +1 512.977-9393 / fax +1 512.977.9398 / Toll Free Technical Support +1 866-353-3496
3600 W. Parmer Lane, Suite 100; Austin, TX 78727 / www.netstreams.com.

